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Abstract

Current state-of-the-art techniques for non-invasive
imaging of cardiac electrical phenomena require voltage
recordings from dozens of different torso locations and
anatomical models built from expensive medical diagnos-
tic imaging procedures. This study aimed to assess if re-
cent machine learning advances could alternatively recon-
struct electroanatomical maps at clinically relevant reso-
lutions using only the standard 12-lead electrocardiogram
(ECG) as input. To that end, a computational study was
conducted to generate a dataset of over 16000 detailed
cardiac simulations, which was then used to train neural
network (NN) architectures designed to exploit both spa-
tial and temporal correlations in the ECG signal. Analysis
over a validation set showed average errors in activation
map reconstruction below 1.7 msec over 75 intracardiac
locations. Furthermore, phenotypical patterns of activa-
tion and the morphology of the activation potential were
correctly reconstructed. The approach offers opportuni-
ties to stratify patients non-invasively, both retrospectively
and prospectively, using metrics otherwise only available
through invasive clinical procedures.

1. Introduction

The cardiac ECG plays an important role in diagnosing
ventricular arrhythmias because it is non-invasive and cost-
effective while still able of distinguishing a wide variety
of diseases such as ventricular myocardial infarction and
bundle branch blocks. The process of building a map of
cardiac electrical activity from torso electrical recordings
has been well studied in the literature as the cardiac inverse
problem. Traditionally, this problem has been approached
by introducing additional torso electrodes and building a
detailed patient-specific geometrical model based on non-
invasive diagnostic imaging. Numerically, the problem is
notoriously ill posed and requires additional regularization
to yield useful results. Recent methods using machine
learning have bypassed the need for patient-specific ge-

ometries, but they still make use of dozens of torso elec-
trodes [1] and/or are restricted to recordings on the epi-
cardium [2].

This work presents an exploratory study on whether
a machine learned algorithm can reconstruct ventricular
transmural activation maps and full transmembrane volt-
age evolutions using only the 12-lead ECG as input. The
approach is motived by results in the machine learning lit-
erature that show reconstruction of high-dimensional in-
formation from low-dimensional input streams, provided
enough data is available. The core idea is to leverage
decades of advances in first-principles modeling of car-
diac electrophysiology by training NNs over thousands
of detailed simulations. In this work, two imaging prob-
lems are considered: the reconstruction of the time acti-
vation map and the reconstruction of the full transmem-
brane voltage evolution. The resulting reconstruction sys-
tems are computationally efficient and can provide infor-
mation of the electrical behavior inside the patient’s car-
diac ventricles, with a resolution equivalent to an AHA17
segment activation map. The proposed framework can in-
creasingly improve its accuracy by assimilating new sim-
ulated and/or experimental data using transfer learning or
physics-informed regularization techniques.

2. Methods

A comprehensive dataset of computational experiments
was created in this work. Each experiment consists of
intracardiac transmembrane voltage recordings and ECG
signal pairs. The dataset was subsequently used to train
machine learning systems on inverse reconstruction tasks.

2.1. Dataset of cardiac simulations

Cardiac simulations were carried out using Cardioid
[3], a multiscale cardiac simulation code developed at
Lawrence Livermore National Laboratory (LLNL). Simu-
lations were performed over real bi-ventricular cardiac ge-
ometries obtained from the publicly available dataset [4]
and resolved to a 200 µm resolution (see Figure 1). My-
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ocardial fiber orientations were assigned based on a rule-
based laplacian-driven algorithm for interpolating fiber ge-
ometries in the absence of DTMRI data. The high resolu-
tion simulations of the transmembrane voltages within the
myocardium were used to compute the synthetic ECG sig-
nals via the pseudo-ECG method [5]. The locations of the
pseudo-ECG electrodes were chosen based on locations
derived from an existing torso mesh and then normalized
to a 100 mm radius around the center of each mesh (see
Figure 2b). Activation patterns were extracted from the lit-
erature and the cell models [6] included apex-to-base and
transmural action potential duration (APD) heterogeneity.

For the recording of the transmembrane voltages within
the myocardium, 30 points were selected by hand for
each mesh — 17 endocardial points were selected in
the left ventricle (LV), corresponding to standard AHA17
segment locations, and 13 points were selected in the
right ventricle (RV). See Figure 2a for a schematic rep-
resentation of the points over a Bull’s-eye display of the
heart. From these 30 points, 20 exterior wall points
were programmatically identified based on minimum dis-
tances from the hand-selected endocardial points, and 25
mid-myocardial points were then found through interpola-
tion. For each simulation performed, simulated transmem-
brane voltages were recorded for each of the 75 epicar-
dial/midmyocardial/endocardial points. These transmem-
brane voltages were paired with the ECGs collected above
for use in the machine learning classifier.

A wide range of physiological and pathophysiological
parameters was considered, including variations in tissue
conductivities, maximal conductance GKr of the rapid de-
layed rectifier current (0%, or blocked, and 50% with re-
spect the original value in [6]), and basic cycle lengths of
(600 ms and 1000 ms). All simulations were performed for
500 ms of simulation time with 200 µm resolution meshes
and a time-step of 5 µs. The ECG and transmembrane
voltages were recorded at a resolution of 1 ms.

In total, 16140 organ-level simulations were con-
ducted in the course of this work. Simulations were
performed at LLNL’s Lassen supercomputer, concur-
rently utilizing 4 GPUs and 40 CPU cores. With
the publication of this paper, the dataset is now made
publicly available at https://library.ucsd.edu/
dc/object/bb29449106 (which should be cited as
[7]). In that repository, the reader can find further details
on the simulation settings, the mathematical models, the
anatomical geometries and the parameter variations.

2.2. Deep intracardiac electroimaging

The simulation study described above produced pairs of
12-by-500×1ms ECG signals and 75-by-500×1ms trans-
membrane voltage signals. For the sake of notation, those
signals are represented as matrices X ∈ R12×500 and

Figure 1: Bi-ventricular cardiac geometries.

(a) (b)

Figure 2: Recording points. (2a) Location of 30 man-
ually selected endocardial points. (2b) Location of the
pECG electrodes (red) and transmembrane voltage record-
ing points (blue).

V ∈ R75×500, respectively. The activation time vector
A ∈ R75, corresponding to the initial activation time at
each myocardial recording location, is defined as Ai =
minj Vij > 0. Two machine learning tasks were con-
sidered in this work: Task I (activation map reconstruc-
tion), which involved reconstructing A ∈ R75 from X ∈
R12×500, and Task II (transmembrane potential reconstruc-
tion), which involves reconstructing V ∈ R75×500 given
X ∈ R12×500.

These tasks can be regarded as sequence-to-sequence
prediction problems, where the goal is to transform a 500-
length sequence of 12 dimensional vectors into a sequence
of 75 dimensional vectors. For classification and compres-
sion of ECG signals using NNs, researchers have used a
variety of architectures including 1D and 2D CNNs [8],
and hybrid approaches combining CNNs and LSTM units
[9]. For reconstruction tasks of heart surface potentials,
the work in [2] uses a time-delayed NN to map the real
recorded first lead of the ECG to the unipolar surface po-
tential at the right ventricular apex. In this work, where re-
construction was considered over 75 intracardiac positions,
the best results were achieved using 1D CNN architectures
inspired by the SqueezeNet model [10]. Two different net-
works were considered:
• Network I (for Task I) : Network I was constructed us-
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ing SqueezeNet (with 1 dimensional kernels) with a stride
of size 2 in the first convolutional layer and max pool-
ing layers to progressively reduce the temporal dimension.
Additional convolutional layers were added at the end to
reduce the output dimension to R75. The total number of
parameters in the network is 486,657.
• Network II (for Task II) : Network II was constructed
using SqueezeNet (with 1 dimensional kernels). Addi-
tional convolutional layers were added at the end to pro-
duce outputs of dimension R75×500. The total number of
parameters in the network is 392,907.

The considered network architectures allow for both
temporal and spatial information derived from the ECG
signal to be combined and reorganized in a nonlinear way.
For training the networks, each X ∈ R12×500 tensor was
normalized so that maxj(Xij) − minj(Xij) = 1,∀i ∈
{1, . . . , 12}. To train Network II, each V ∈ R75×500

was normalized so that the value range was [0, 1]. The
dataset was randomly split into training and validation sub-
sets containing 95% and 5% of the samples, respectively.
Learning was performed over one GPU at LLNL’s Lassen
supercomputer, using the PyTorch library with Adam op-
timizer, mean squared error as loss, batch of size 32 and
learning rate of magnitude 0.001.

3. Results

Figure 3 shows an example of a simulated ECG (Fig-
ure 3a) and activation map (Figure 3b) in the validation
set. The reconstruction obtained by Network I is shown
in Figure 3c. On average, the network incurs an error of
1.66 msec over all 75 recording points in the validation set
with a mean standard deviation of 1.49 msec. These results
show that Network I is able to reconstruct the activation
map over the validation set of simulated data. In partic-
ular, the algorithm is able to capture and reproduce both
septal and transmural activation times in cardiac tissue.

Figure 4 shows the reconstruction results obtained with
Network II for the validation ECG in Figure 3a. Re-
call that this network produces as output the whole ten-
sor V ∈ R75×500. Figure 4a shows an example of recon-
structed transmembrane voltage compared with reference
simulated result at myocardial recording point 1, which
is shown in Figure 4b. Similar results were obtained for
points 17 and 67 (also shown in Figure 4b). The corre-
sponding activation time vectorA ∈ R75 is computed from
V ∈ R75×500 and plotted in Figure 4b.

The derived activation times are slightly slower com-
pared to ground truth. Specifically, the mean error in the
reconstruction of activation times using Network II for all
points in the validation test is 6.5 msec with a mean stan-
dard deviation of 6.65 msec. The error is higher than in
Network I, and is not surprising since in this case the re-
construction is not targeting the activation map itself but

(a) Simulated ECGs

(b) Simulated activation (c) Reconstructed map

Figure 3: Activation time reconstruction using Network I.
All times in ms, and all voltages in mV. Isochrones added
every 10 ms. (3a) ECG signals (from 0 to 500 ms) used
to reconstruct the activation times in (3c). (3b) Ground-
truth activation times reconstructed from the 75 voltage
samples. (3c) Predicted activation times from the ECG of
this simulation. Result correspond to a validation case.

rather the whole temporal evolution of the transmembrane
voltage within the myocardium.

Figure 4a shows that the transmembrane voltage recon-
struction obtained with Network II contains non-physical
oscillations when compared to the simulated data. How-
ever, the overall amplitude and APD of the curve are well
captured by the network (Pearson correlation coefficient is
0.9745 over all recording points in the validation set with
a mean standard deviation of 0.0237). The error in APD is
9.7892 msec over all recording points in the validation set
with a mean standard deviation of 10.71 msec.

These results show that Network II it is able to capture
the gross phenotypical patterns of activation, the morphol-
ogy of the activation potential including the APD and the
complete dynamical evolution of the depolarization and re-
polarization phases of the cardiac cycle.

4. Conclusions

In this work, an approach combining synthetic data and
machine learning has been proposed for reconstruction
problems in intracardiac electrical imaging from 12-lead
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(a) Point 1 (b) Reconstructed map

Figure 4: Transmembrane voltage reconstruction using
Network II. All times in ms, and all voltages in mV.
Isochrones added every 10 ms. (4a) Comparison of the
ground-truth transmembrane voltage and the predicted
transmembrane voltage. (4b) Reconstructed map with Net-
work II.

ECGs. The proposed NN architectures exploit temporal
correspondences in torso voltage recordings, thus mimick-
ing the ability of clinicians to form diagnosis by looking
at the time-context of the ECG and perform pattern match-
ing on the shape of ECG waveforms. The approach has
been shown to reproduce endocardial, epicardial, and mid-
myocardial activation maps and transmembrane voltages
when applied to a simulated dataset.

The generalization to real clinical data remains to be in-
vestigated. It is unknown what role abnormal patient ge-
ometries, myocardial infarction, or other clinical etiologies
would play if this approach was applied in a clinical set-
ting. Additional patient information beyond the bare 12-
lead electrocardiogram (e.g., atrial data or additional syn-
thetic ECGs) and physics-informed regularization might
be required to build a truly robust clinical machine learning
algorithm.

In conclusion, the proposed study is a necessary step to-
wards an electrical cardiac imaging solution that could en-
able non-invasive stratification of patients based on metrics
otherwise only available through invasive electroanatomi-
cal mapping studies. The resulting prediction tools do not
require any special equipment, work with small number
of torso electrodes and can be stored and deployed in de-
vices with low memory and processing capabilities. The
designed neural networks can also be readily used as a
data-augmentation technique for downstream ECG-based
machine learning algorithms.
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